
Experimental analysis of the stick-slip characteristics of faults at different loading rates
Author(s) -
Baoxin Jia,
Zong-xian Gao,
Xiu-hui Han,
Jiaxu Jin,
Jianjun Zhang
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0231464
Subject(s) - slip (aerodynamics) , engineering , aerospace engineering
In deep underground engineering, in a large spatial, high-stress environment, rapid excavation is likely to affect the loading rate of the fault structure and to cause stick-slip. In this study, an experiment was conducted to explore the stick-slip characteristics at different loading rates. A double-sided shear experiment and the digital speckle correlation method were used to analyze the evolution of the displacement field, the slip displacement, and the slip rate of the fault’s stick-slip activity at different loading rates as well as their correlation with the loading rate. The loading rate, moment magnitude, and stress drop of the fault’s stick-slip and their corresponding relationships were studied. The results show that the occurrence of stick-slip is inversely proportional to the loading rate. The evolution of the fault-slip displacement field at different loading rates is similar. At a given loading rate, the magnitude is positively correlated with the stress drop. The magnitude and stress drop are inversely related to the loading rate.