z-logo
open-access-imgOpen Access
Deep learning based searching approach for RDF graphs
Author(s) -
Hatem Soliman
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0230500
Subject(s) - rdf , computer science , sparql , information retrieval , word2vec , semantics (computer science) , artificial intelligence , semantic web , deep learning , embedding , programming language
The Internet is a remarkably complex technical system. Its rapid growth has also brought technical issues such as problems to information retrieval. Search engines retrieve requested information based on the provided keywords. Consequently, it is difficult to accurately find the required information without understanding the syntax and semantics of the content. Multiple approaches are proposed to resolve this problem by employing the semantic web and linked data techniques. Such approaches serialize the content using the Resource Description Framework (RDF) and execute the queries using SPARQL to resolve the problem. However, an exact match between RDF content and query structure is required. Although, it improves the keyword-based search; however, it does not provide probabilistic reasoning to find the semantic relationship between the queries and their results. From this perspective, in this paper, we propose a deep learning-based approach for searching RDF graphs. The proposed approach treats document requests as a classification problem. First, we preprocess the RDF graphs to convert them into N-Triples format. Second, bag-of-words (BOW) and word2vec feature modeling techniques are combined for a novel deep representation of RDF graphs. The attention mechanism enables the proposed approach to understand the semantic between RDF graphs. Third, we train a convolutional neural network for the accurate retrieval of RDF graphs using the deep representation. We employ 10-fold cross-validation to evaluate the proposed approach. The results show that the proposed approach is accurate and surpasses the state-of-the-art. The average accuracy , precision , recall , and f-measure are up to 97.12% , 98.17% , 95.56% , and 96.85% , respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here