z-logo
open-access-imgOpen Access
Niche-processes induced differences in plant growth, carbon balance, stress resistance, and regeneration affect community assembly over succession
Author(s) -
Zhaoyuan Tan,
Hui Zhang
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0229443
Subject(s) - biology , ecological succession , abiotic component , germination , photosynthesis , ecology , specific leaf area , niche , abundance (ecology) , plant community , botany , relative species abundance , chronosequence
The relationship between plant traits and species relative abundance along environmental gradients can provide important insights on the determinants of community structure. Here we bring extensive data on six key traits (specific leaf area (SLA), seed mass, seed germination rate, height, leaf proline content and photosynthesis rate) to test trait-abundance relationships in a successional chronosequence of subalpine meadow plant communities. Our results show that in late-successional meadows, abundant species had higher values for seed mass, seed germination rate, and SLA, but had lower values for height, photosynthesis rate, and leaf proline content than rarer species. The opposite patterns of trait-abundance relationships were observed for early-successional meadows. Observations of strong trait convergence and divergence in these successional communities lend greater support for niche processes compared to neutral community assembly. We conclude that species’ niches that determine plant growth (plant height and photosynthesis rate), carbon balance (SLA, photosynthesis rate), regeneration (seed mass and seed germination rate), and abiotic stress resistance (leaf proline content) under different environmental conditions have strong influence on species relative abundance in these sub-alpine meadow communities during succession.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here