z-logo
open-access-imgOpen Access
Biomechanical comparison of pedicle screw fixation strength in synthetic bones: Effects of screw shape, core/thread profile and cement augmentation
Author(s) -
Mu-Yi Liu,
Tsung-Ting Tsai,
PoLiang Lai,
Ming-Kai Hsieh,
Lih-Huei Chen,
ChingLung Tai
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0229328
Subject(s) - screw thread , thread (computing) , conical surface , materials science , fixation (population genetics) , orthodontics , biomedical engineering , composite material , medicine , engineering , mechanical engineering , population , environmental health
Pedicle screw loosening resulting from insufficient bone-screw interfacial holding power is not uncommon. The screw shape and thread profile are considered important factors of the screw fixation strength. This work investigated the difference in pullout strength between conical and cylindrical screws with three different thread designs. The effects of the thread profiles on the screw fixation strength of cannulated screws with or without cement augmentation in osteoporotic bone were also evaluated. Commercially available artificial standard L4 vertebrae and low-density polyurethane foam blocks were used as substitutes for healthy vertebrae and osteoporotic bones, respectively. The screw pullout strengths of nine screw systems were investigated (six in each). These systems included the combination of three different screw shapes (solid/cylindrical, solid/conical and cannulated/cylindrical) with three different thread profiles (fine-thread, coarse-thread and dual-core/dual-thread). Solid screws were designed for the cementless screw fixation of vertebrae using the standard samples, whereas cannulated screws were designed for the cemented screw fixation of osteoporotic bone using low-density test blocks. Following specimen preparation, a screw pullout test was conducted using a material test machine, and the maximal screw pullout strength was compared among the groups. This study demonstrated that, in healthy vertebrae, both the conical and dual-core/dual-thread designs can improve pullout strength. A combination of the conical and dual-core/dual-thread designs may achieve optimal postoperative screw stability. However, in osteoporotic bone, the thread profile have little impact on the screw fixation strength when pedicle screws are fixed with cement augmentation. Cement augmentation is the most important factor contributing to screw pullout fixation strength as compared to screw designs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here