
Genotyping by multiplexed sequencing (GMS): A customizable platform for genomic selection
Author(s) -
Travis M. Ruff,
Elliott J. Marston,
Jonathan D. Eagle,
Sajal Sthapit,
Marcus A. Hooker,
Daniel Z. Skinner,
Deven R. See
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0229207
Subject(s) - genotyping , snp genotyping , biology , molecular inversion probe , computational biology , genetics , single nucleotide polymorphism , illumina dye sequencing , dna sequencing , ion semiconductor sequencing , genotype , gene
As genotyping technologies continue to evolve, so have their throughput and multiplexing capabilities. In this study, we demonstrate a new PCR-based genotyping technology that multiplexes thousands of single nucleotide polymorphism (SNP) markers with high-throughput capabilities in a simple protocol using a two-step PCR approach. The bioinformatic pipeline is user friendly and yields results that are intuitive to interpret. This method was tested on two recombinant inbred line (RIL) populations that had previous genotyping data from the Illumina Infinium assay for Triticum aestivum L. and the two data sets were found to be 100% in agreement. The genotyping by multiplexed sequencing (GMS) protocol multiplexes 1,656 wheat SNP markers, 207 syntenic barley SNP markers, and 49 known informative markers, which generate a possible 2,433 data points (including homoeoalleles and paralogs). This genotyping approach has the flexibility of being sequenced on either the Ion Torrent or Illumina next generation sequencing (NGS) platforms. Products are the result of direct sequencing and are therefore more reliable than scatter plot analysis which is the output of other genotyping methods such as the Illumina Infinium assay, komeptitive allele specific PCR and other like technologies.