z-logo
open-access-imgOpen Access
Reduction in lignin content and increase in the antioxidant capacity of corn and sugarcane silages treated with an enzymatic complex produced by white rot fungus
Author(s) -
Erica Machado,
Paula Toshimi MatumotoPintro,
Luís Carlos Vinhas Ítavo,
Bruna Calvo Agustinho,
João Luiz Pratti Daniel,
Nadine Woruby Santos,
Juliano Bragatto,
Matheus Gonçalves Ribeiro,
Lúcia Maria Zeoula
Publication year - 2020
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0229141
Subject(s) - lignin , hemicellulose , fermentation , food science , silage , chemistry , cellulose , neutral detergent fiber , dry matter , botany , biochemistry , biology , organic chemistry
The objective was to evaluate the effect of the addition of 0, 10, 20, and 30 mg.kg -1 of natural matter of a lignocellulosic enzymatic complex produced by the white rot fungus on the chemical composition, cumulative gas production in vitro, and antioxidant compounds of corn and sugarcane silages. After being chopped and treated with the enzymatic complex, the plants were packed in vacuum-sealed bags. After 60 days, the mini silos were opened and the samples were dried in a forced ventilation oven at 55 °C for analysis of the proposed parameters. The experiment was conducted in a completely randomized design with four replicates per treatment. In the corn silage, there was a linear reduction in the lignin concentration. In the sugarcane silage showed a reduction of 12% in the lignin concentration, a linear reduction in the hemicellulose content, and a decrease of 8% in the cellulose concentration compared to the control treatment. The lignin monomers had linear increases in the syringyl:guaiacil ratio. This reflected on significant increases in the concentration of the non-fibrous carbohydrates and the A + B1 fraction of the carbohydrates, and a reduction in the C fraction. The in vitro gas production increased, the time of colonization and initiation of in vitro fermentation linearly decreased in both silages. The phenolic compounds and the antioxidant capacity increased linearly with the addition of the enzymes in both silages. The addition of the lignocellulolytic enzymes to the silages caused changes in the cell wall, resulting in improvements in the in vitro fermentative parameters, besides the additional effect on the antioxidant capacity. There was an effect of the addition of the enzymes on the evaluated fodder, and the best concentration was, on average, 20 mg kg -1 MN for corn silage and 10 mg kg -1 NM for sugarcane silage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here