z-logo
open-access-imgOpen Access
Identification of QTLs for resistance to maize rough dwarf disease using two connected RIL populations in maize
Author(s) -
Xintao Wang,
Qing Yang,
Ziju Dai,
Yan Wang,
Yingying Zhang,
Baoquan Li,
Wei Zhao,
Junjie Hao
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0226700
Subject(s) - biology , plant disease resistance , resistance (ecology) , identification (biology) , agronomy , microbiology and biotechnology , veterinary medicine , genetics , botany , gene , medicine
Maize rough dwarf disease (MRDD) is a significant viral disease caused by rice black-streaked dwarf virus (RBSDV) in China, which results in 30% yield losses in affected summer maize-growing areas. In this study, two connected recombinant inbred line (RIL) populations were constructed to elucidate the genetic basis of resistance during two crop seasons. Ten quantitative trait loci (QTLs) for resistance to MRDD were detected in the two RILs. Individual QTLs accounted for 4.97–23.37% of the phenotypic variance explained (PVE). The resistance QTL ( qZD-MRDD8-1 ) with the largest effect was located in chromosome bin 8.03, representing 16.27–23.37% of the PVE across two environments. Interestingly, one pair of common significant QTLs was located in the similar region on chromosome 4 in both populations, accounting for 7.11–9.01% of the PVE in Zheng58×D863F (RIL-ZD) and 9.43–13.06% in Zheng58×ZS301 (RIL-ZZ). A total of five QTLs for MRDD resistance trait showed significant QTL-by-Environment interactions (QEI). Two candidate genes associated with resistance ( GDSL-lipase and RPP13-like gene) which were higher expressed in resistant inbred line D863F than in susceptible inbred line Zheng58, were located in the physical intervals of the major QTLs on chromosomes 4 and 8, respectively. The identified QTLs will be studied further for application in marker-assisted breeding in maize genetic improvement of MRDD resistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here