
Microdissection and whole chromosome painting confirm karyotype transformation in cryptic species of the Lariophagus distinguendus (Förster, 1841) complex (Hymenoptera: Pteromalidae)
Author(s) -
Vladimir E. Gokhman,
Marcelo de Bello Cioffi,
Christian König,
Marie Pollmann,
Cornelia Gantert,
Lars Krogmann,
Johannes L. M. Steidle,
Nadezda Kosyakova,
Thomas Liehr,
Ahmed AlRikabi
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0225257
Subject(s) - pteromalidae , biology , karyotype , hymenoptera , species complex , parasitoid , evolutionary biology , chromosome , morphometrics , zoology , genetics , phylogenetic tree , gene
Karyotypes of two cryptic species of parasitoid Hymenoptera with n = 5 and 6 belonging to the Lariophagus distinguendus (Förster, 1841) complex, which includes cosmopolitan parasitoids of coleopteran stored-product pests, were studied using glass-needle based microdissection, reverse and cross-species fluorescence in situ hybridisation (FISH). This experiment strongly indicates that the largest metacentric chromosome in the karyotype with n = 5 originated from a particular fusion between the only acrocentric and a smaller metacentric chromosome of the set with n = 6, therefore confirming our previous hypothesis based on the karyotypic analysis using chromosome morphometrics. This study represents the first successful application of both microdissection and whole chromosome painting for the reconstruction of karyotypic rearrangements in closely related species of parasitoids, as well as in the order Hymenoptera in general.