Open Access
Analysing trajectories of a longitudinal exposure: A causal perspective on common methods in lifecourse research
Author(s) -
Sarah Gadd,
Pwg Tennant,
Alison Heppenstall,
Jan R. Boehnke,
Mark S. Gilthorpe
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0225217
Subject(s) - outcome (game theory) , causal inference , longitudinal study , longitudinal data , econometrics , statistics , psychology , computer science , mathematics , data mining , mathematical economics
Longitudinal data is commonly analysed to inform prevention policies for diseases that may develop throughout life. Commonly methods interpret the longitudinal data as a series of discrete measurements or as continuous patterns. Some of the latter methods condition on the outcome, aiming to capture ‘average’ patterns within outcome groups, while others capture individual-level pattern features before relating these to the outcome. Conditioning on the outcome may prevent meaningful interpretation. Repeated measurements of a longitudinal exposure (weight) and later outcome (glycated haemoglobin levels) were simulated to match three scenarios: one with no causal relationship between growth rate and glycated haemoglobin; two with a positive causal effect of growth rate on glycated haemoglobin. Two methods that condition on the outcome and one that did not were applied to the data in 1000 simulations. The interpretation of the two-step method matched the simulation in all causal scenarios, but that of the methods conditioning on the outcome did not. Methods that condition on the outcome do not accurately represent a causal relationship between a longitudinal pattern and outcome. Researchers considering longitudinal data should carefully determine if they wish to analyse longitudinal data as a series of discrete time points or by extracting pattern features.