z-logo
open-access-imgOpen Access
Genetic codes optimized as a traveling salesman problem
Author(s) -
Oliver Attie,
Brian Sulkow,
Chong Di,
Wang Qiu
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0224552
Subject(s) - genetic code , amino acid , travelling salesman problem , artificial neural network , computational biology , computer science , artificial intelligence , biology , genetics , algorithm
The Standard Genetic Code (SGC) is robust to mutational errors such that frequently occurring mutations minimally alter the physio-chemistry of amino acids. The apparent correlation between the evolutionary distances among codons and the physio-chemical distances among their cognate amino acids suggests an early co-diversification between the codons and amino acids. Here we formulated the co-minimization of evolutionary distances between codons and physio-chemical distances between amino acids as a Traveling Salesman Problem (TSP) and solved it with a Hopfield neural network. In this unsupervised learning algorithm, macromolecules (e.g., tRNAs and aminoacyl-tRNA synthetases) associating codons with amino acids were considered biological analogs of Hopfield neurons associating “tour cities” with “tour positions”. The Hopfield network efficiently yielded an abundance of genetic codes that were more error-minimizing than SGC and could thus be used to design artificial genetic codes. We further argue that as a self-optimization algorithm, the Hopfield neural network provides a model of origin of SGC and other adaptive molecular systems through evolutionary learning.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here