z-logo
open-access-imgOpen Access
Multi-focus microscope with HiLo algorithm for fast 3-D fluorescent imaging
Author(s) -
Wei Lin,
Dongping Wang,
Yunlong Meng,
ShihChi Chen
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0222729
Subject(s) - microscope , focus (optics) , microscopy , image resolution , computer science , fluorescence , fluorescence lifetime imaging microscopy , optics , resolution (logic) , materials science , fluorescence microscope , artificial intelligence , biomedical engineering , physics , medicine
In this paper, we present a new multi-focus microscope (MFM) system based on a phase mask and HiLo algorithm, achieving high-speed (20 volumes per second), high-resolution, low-noise 3-D fluorescent imaging. During imaging, the emissions from the specimen at nine different depths are simultaneously modulated and focused to different regions on a single CCD chip, i.e., the CCD chip is subdivided into nine regions to record images from the different selected depths. Next, HiLo algorithm is applied to remove the background noises and to form clean 3-D images. To visualize larger volumes, the nine layers are scanned axially, realizing fast 3-D imaging. In the imaging experiments, a mouse kidney sample of ~ 60 × 60 × 16 μm 3 is visualized with only 10 raw images, demonstrating substantially enhanced resolution and contrast as well as suppressed background noises. The new method will find important applications in 3-D fluorescent imaging, e.g., recording fast dynamic events at multiple depths in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here