z-logo
open-access-imgOpen Access
Enhanced effectiveness of oil dispersants in destabilizing water-in-oil emulsions
Author(s) -
Gerald F. John,
Joel S. Hayworth
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0222460
Subject(s) - dispersant , solubility , asphaltene , chemical engineering , fraction (chemistry) , chemistry , environmental science , environmental chemistry , chromatography , organic chemistry , dispersion (optics) , physics , optics , engineering
Oil impacting the northern Gulf of Mexico shoreline from the 2010 Deepwater Horizon accident was predominantly in the form of water-in-oil emulsions (WOE), a chemically weathered, highly viscous, neutrally buoyant material. Once formed, WOE are extremely difficult to destabilize. Commercially-available oil dispersants are largely ineffective de-emulsifiers as a result of the inability of dispersant surfactants to displace asphaltenes stabilizing the oil-water interface. This study investigated the effectiveness of the commercially-available dispersant Corexit 9500A, modified to enhance its polar fraction, in destabilizing WOE. Results suggest that Corexit modified to include between 20–60% fractional amount of either polar additive (1-octanol or hexylamine) will produce a modest increase in WOE instability, with a Corexit to hexylamine ratio of approximately 80/20 providing the most effective enhanced destabilization. Results support the hypothesis that modifying the fraction of polar constituents in commercial dispersants will increase asphaltene solubility, decrease oil-water interface stability, and enhance WOE instability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here