z-logo
open-access-imgOpen Access
Rare earth elements in paddy fields from eroded granite hilly land in a southern China watershed
Author(s) -
Haibin Chen,
Zhibiao Chen,
Qianyi Ma,
Qingqing Zhang
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0222330
Subject(s) - watershed , soil water , geostatistics , spatial distribution , environmental science , erosion , rare earth , soil test , hydrology (agriculture) , soil science , pollution , spatial variability , geology , physical geography , mineralogy , geography , ecology , biology , geomorphology , statistics , mathematics , remote sensing , geotechnical engineering , machine learning , computer science
There are large amounts of ion-adsorption rare earth resources in the granite red soil region of southern China, and exploitation of rare earth elements (REEs) has caused serious soil erosion and soil pollution in the area. In this study, the spatial variability of soil REEs in Zhuxi watershed, Changting County, southern China, was analyzed using a geostatistics method. The analysis produced several important results: (1) The content of total rare earth elements (TREEs) in the soil samples ranged from 56.04 to 951.76 mg kg −1 , with a mean value of 255.34 mg kg −1 , which was higher than the background value of soil in China. The REE variables showed strong positive Ce anomalies and strong negative Eu anomalies, with mean values of 2.26 and 0.44, respectively. (2) The contents of TREEs in five subtypes of the soils were different, but they had broadly similar curves of chondrite-normalized REE patterns, with steeper patterns from La to Eu and flatter patterns from Eu to Y. (3) The spatial variability of light rare earth elements (LREEs) was mainly affected by natural factors, but the spatial variabilities of heavy rare earth elements (HREEs) and TREEs were influenced by the combination of natural factors and anthropogenic factors. Soil erosion can contribute significantly to REE migration, especially for HREEs. (4) The distribution of TREEs showed that the high content of TREEs was in the lowland of the western watershed. By comparing the distributions of TREEs in paddy fields and hilly land, we found that the area with a high content of TREEs was greater in paddy fields than in hilly land, so we deduced that REEs migrate from hilly land to the paddy field and accumulate in the soil there.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here