
Robustness of network attack strategies against node sampling and link errors
Author(s) -
Momoko Otsuka,
Sho Tsugawa
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0221885
Subject(s) - computer science , robustness (evolution) , context (archaeology) , network science , network simulation , network formation , sampling (signal processing) , interdependent networks , complex network , data mining , computer network , paleontology , biochemistry , chemistry , filter (signal processing) , world wide web , gene , computer vision , biology
We investigate the effectiveness of network attack strategies when the attacker has only imperfect information about the network. While most existing network attack strategies assume complete knowledge about the network, in reality it is difficult to obtain the complete structure of a large-scale complex network. This paper considers two scenarios in which the available network information is imperfect. In one scenario, the network contains link errors (i.e., missing and false links) due to measurement errors, and in the other scenario the target network is so large that only part of the network structure is available from network sampling. Through extensive simulations, we show that particularly in a network with highly skewed degree distribution, network attack strategies are robust against link errors. Even if the network contains 30% false links and missing links, the strategies are just as effective as when the complete network is available. We also show that the attack strategies are far less effective when the network is obtained from random sampling, whereas the detrimental effects of network sampling on network attack strategies are small when using biased sampling strategies such as breadth-first search, depth-first search, and sample edge counts. Moreover, the effectiveness of network attack strategies is examined in the context of network immunization, and the implications of the results are discussed.