
MicroRNA-27 inhibits adipogenic differentiation in orbital fibroblasts from patients with Graves’ orbitopathy
Author(s) -
Sun Young Jang,
Min Kyung Chae,
JoonHyung Lee,
Eun Jig Lee,
Jin Sook Yoon
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0221077
Subject(s) - adipogenesis , microrna , fibroblast , downregulation and upregulation , chemistry , transfection , in vitro , microbiology and biotechnology , endocrinology , medicine , biology , gene , biochemistry
Background To investigate the role of microRNA (miR)-27a and miR-27b in adipogenesis in an in vitro model of Graves’ orbitopathy (GO). Methods Orbital fat tissues were harvested from GO and non-GO participants for primary orbital fibroblast cultures. The expression levels of miR-27a and miR-27b between GO and non-GO orbital fat tissues were compared. During adipogenesis of GO orbital fibroblasts, the expression levels of miR-27a and miR-27b were determined, and the effects of mimics of miR-27a and miR-27b transfection on adipogenesis of GO orbital fibroblast were investigated. Results Real time-polymerase chain reaction showed significantly more decreases in miR-27a and miR-27b levels in orbital fat tissues in GO participants than in non-GO participants (p < 0.05). The expression of both miR-27a and miR-27b was highest in orbital fibroblasts at day 0 and declined gradually after the induction of adipogenic differentiation. The expression levels of PPARγ, CCAAT/enhancer binding protein (C/EBP)α and C/EBPβ were decreased and Oil Red O-stained lipid droplets were lower in GO orbital fibroblasts transfected with miR-27a and miR-27b mimics than in negative controls. Conclusions Our results indicated that miR-27a and miR-27b inhibited adipogenesis in orbital fibroblasts from GO patients. Further studies are required to examine the potential of miR-27a and miR-27b as targets for therapeutic strategies.