
Modulation of serotonin signaling by the putative oxaloacetate decarboxylase FAHD-1 in Caenorhabditis elegans
Author(s) -
Giorgia Baraldo,
Solmaz Etemad,
Alexander K. H. Weiss,
Pidder JansenDürr,
Hildegard I. D. Mack
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0220434
Subject(s) - biology , caenorhabditis elegans , neurotransmitter , serotonin , microbiology and biotechnology , signal transduction , genetics , central nervous system , neuroscience , gene , receptor
Human fumarylacetoacetate hydrolase (FAH) domain containing protein 1 (FAHD1) is a mitochondrial oxalocatate decarboxylase, the first of its kind identified in eukaryotes. The physiological role of FAHD1 in other eukaryotes is still poorly understood. In C . elegans loss of the FAHD1 ortholog FAHD-1 was reported to impair mitochondrial function, locomotion and egg-laying behavior, yet the underlying mechanisms remained unclear. Using tissue-specific rescue of fahd-1(-) worms, we find that these phenotypic abnormalities are at least in part due to fahd-1 ’s function in neurons. Moreover, we show that egg-laying defects in fahd-1(-) worms can be fully rescued by external dopamine administration and that depletion of fahd-1 expression induces expression of several enzymes involved in serotonin biosynthesis. Together, our results support a role for fahd-1 in modulating serotonin levels and suggest this protein as a novel link between metabolism and neurotransmitter signaling in the nervous system. Finally, we propose a model to explain how a metabolic defect could ultimately lead to marked changes in neuronal signaling.