z-logo
open-access-imgOpen Access
Prognostic value for mortality of the new FADOI-COMPLIMED score(s) in patients hospitalized in medical wards
Author(s) -
Roberto Nardi,
Carlo Nozzoli,
Franco Berti,
Erminio Bonizzoni,
Leonardo M. Fabbri,
Stefania Frasson,
Maurizia Gambacorta,
Marilisa Martini,
Antonino Mazzone,
C.L. Muzzulini,
Alessandro Nobili,
Mauro Campanini
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0219767
Subject(s) - medicine , logistic regression , observational study , cohort , emergency medicine , prospective cohort study , cohort study , receiver operating characteristic
Background Recently we defined a user-friendly tool (FADOI-COMPLIMED scores—FCS) to assess complexity of patients hospitalized in medical wards. FCS-1 is an average between the Barthel Index and the Exton-Smith score, while FCS-2 is obtained by using the Charlson score. The aim of this paper is to assess the ability of the FCS to predict mortality in-hospital and after 1-3-6-12-months. In this perspective, we performed comparisons with the validated Multidimensional Prognostic Index (MPI). Methods It is a multicenter, prospective observational study, enrolling patients aged over 40, suffering from at least two chronic diseases and consecutively admitted to Internal Medicine departments. For each patient, data from 13 questionnaires were collected. Survival follow-up was conducted at 1-3-6-12 months after discharge. The relationships between cumulative incidences of death with FCS were investigated with logistic regression analyses. ROC curve analyses were performed in order to compare the predictiveness of the logistic models based on FCS with respect to those with MPI taken as reference. Results A cohort of 541 patients was evaluated. A 10-point higher value for FCS-1 and FCS-2 leads to an increased risk of 1-year death equal to 25.0% and 27.1%, respectively. In case of in-hospital mortality, the relevant percentages were 63.1% and 15.3%. The logistic model based on FCS is significantly more predictive than the model based on MPI (which requires an almost doubled number of items) for all the time-points considered. Conclusions Assessment of prognosis of patients has the potential to guide clinical decision-making and lead to better care. We propose a new, efficient and easy-to-use instrument based on FCS, which demonstrated a good predictive power for mortality in patients hospitalized in medical wards. This tool may be of interest for clinical practice, since it well balances feasibility (requiring the compilation of 34 items, taking around 10 minutes) and performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here