Open Access
Response of net primary productivity to vegetation restoration in Chinese Loess Plateau during 1986-2015
Author(s) -
Xueding Jiang,
Wei Shen,
Xiaoyong Bai
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0219270
Subject(s) - primary production , vegetation (pathology) , terrestrial ecosystem , environmental science , arid , restoration ecology , ecosystem , productivity , land cover , carbon sequestration , loess , physical geography , ecology , land use , geography , geology , biology , carbon dioxide , medicine , macroeconomics , pathology , geomorphology , economics
Land use and land cover change induced by large scale ecological restoration programs has a significant impact on the terrestrial ecosystem carbon cycle, especially on the net primary productivity (NPP) in arid and semi-arid regions. This study investigated the change in NPP caused by the large-scale ecological restoration in the Chinese Loess Plateau (LPR) region from 1986 to 2015 based on land cover datasets and NPP calculated using the Carnegie-Ames-Stanford Approach model. The results indicated that the annual total NPP exhibited a significant uptrend ( P < 0.01) throughout the whole vegetation restoration region during the last 30 years, with an annual increase of 0.137 Tg C. A significant abrupt change was detected in 2006 for the annual total NPP series. Over half of the restoration region showed an increase in NPP in the past three decades, however, about 30~40% of the vegetation restoration region exhibited NPP loss before 2006, but subsequently NPP loss was found in only approximately 20% of the study region. Overall, the increase in NPP attributed to the vegetation restoration reached 51.14 Tg C in the past three decades, indicating that these large-scale vegetation restoration programs increased the carbon sequestration capacity of terrestrial ecosystems in the Loess Plateau. The findings of this study improve our understanding of the effects of the green campaign on terrestrial ecosystems.