z-logo
open-access-imgOpen Access
A standardised framework to identify optimal animal models for efficacy assessment in drug development
Author(s) -
Guilherme S. Ferreira,
Désirée H. Veening-Griffioen,
Wouter Boon,
Ellen H.M. Moors,
Christine C. Gispende Wied,
Huub Schellekens,
Peter J.K. van Meer
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0218014
Subject(s) - drug development , drug , medicine , computational biology , bioinformatics , computer science , pharmacology , intensive care medicine , biology
Poor translation of efficacy data derived from animal models can lead to clinical trials unlikely to benefit patients–or even put them at risk–and is a potential contributor to costly and unnecessary attrition in drug development. Objectives To develop a tool to assess, validate and compare the clinical translatability of animal models used for the preliminary assessment of efficacy. Design and results We performed a scoping review to identify the key aspects used to validate animal models. Eight domains (Epidemiology, Symptomatology and Natural History–SNH, Genetic, Biochemistry, Aetiology, Histology, Pharmacology and Endpoints) were identified. We drafted questions to evaluate the different facets of human disease simulation. We designed the Framework to Identify Models of Disease (FIMD) to include standardised instructions, a weighting and scoring system to compare models as well as factors to help interpret model similarity and evidence uncertainty. We also added a reporting quality and risk of bias assessment of drug intervention studies in the Pharmacological Validation domain. A web-based survey was conducted with experts from different stakeholders to gather input on the framework. We conducted a pilot study of the validation in two models for Type 2 Diabetes (T2D)–the ZDF rat and db/db mouse. Finally, we present a full validation and comparison of two animal models for Duchenne Muscular Dystrophy (DMD): the mdx mouse and GRMD dog. We show that there are significant differences between the mdx mouse and the GRMD dog, the latter mimicking the human epidemiological, SNH, and histological aspects to a greater extent than the mouse despite the overall lack of published data. Conclusions FIMD facilitates drug development by serving as the basis to select the most relevant model that can provide meaningful data and is more likely to generate translatable results to progress drug candidates to the clinic.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here