
Targeted location of microseismic events based on a 3D heterogeneous velocity model in underground mining
Author(s) -
Pingan Peng,
Liguan Wang
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0212881
Subject(s) - hypocenter , microseism , underground mining (soft rock) , induced seismicity , block (permutation group theory) , computer science , data mining , block model , geology , particle swarm optimization , algorithm , seismology , geodesy , mining engineering , coal mining , mathematics , engineering , coal , geometry , waste management
The accurate location of induced seismicity is a problem of major interest in the safety monitoring of underground mines. Complexities in the seismic velocity structure, particularly changes in velocity caused by the progression of mining excavations, can cause systematic event mislocations. To address this problem, we present a novel construction method for an arbitrary 3D velocity model and a targeted hypocenter determination method based on this velocity model in underground mining. The method constructs a velocity model from 3D geological objects that can accurately express the interfaces of geologic units. Based on this model, the block corresponding to the minimum difference between the observed arrival times and the theoretical arrival times computed by the Fast Marching Method is located. Finally, a relocation procedure is carried out within the targeted block by heuristic algorithms to improve the performance. The accuracy and efficiency of the proposed method are demonstrated by the source localization results of both synthetic data and on-site data from Dongguashan Copper Mine. The results show that our proposed method significantly improves the location accuracy compared with the widely used Simplex and Particle Swarm Optimization methods.