
Complex harmonic regularization with differential evolution in a memetic framework for biomarker selection
Author(s) -
Sai Wang,
Haiwei Shen,
Hua Chai,
Yong Liang
Publication year - 2019
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0210786
Subject(s) - hyperparameter , feature selection , differential evolution , computational biology , computer science , regularization (linguistics) , biomarker discovery , biology , memetic algorithm , gene , artificial intelligence , machine learning , evolutionary algorithm , genetics , proteomics
For studying cancer and genetic diseases, the issue of identifying high correlation genes from high-dimensional data is an important problem. It is a great challenge to select relevant biomarkers from gene expression data that contains some important correlation structures, and some of the genes can be divided into different groups with a common biological function, chromosomal location or regulation. In this paper, we propose a penalized accelerated failure time model CHR-DE using a non-convex regularization (local search) with differential evolution (global search) in a wrapper-embedded memetic framework. The complex harmonic regularization (CHR) can approximate to the combinationℓ p( 1 2 ≤ p < 1 )and ℓ q (1 ≤ q < 2) for selecting biomarkers in group. And differential evolution (DE) is utilized to globally optimize the CHR’s hyperparameters, which make CHR-DE achieve strong capability of selecting groups of genes in high-dimensional biological data. We also developed an efficient path seeking algorithm to optimize this penalized model. The proposed method is evaluated on synthetic and three gene expression datasets: breast cancer, hepatocellular carcinoma and colorectal cancer. The experimental results demonstrate that CHR-DE is a more effective tool for feature selection and learning prediction.