
Voxel segmentation-based 3D building detection algorithm for airborne LIDAR data
Author(s) -
Liying Wang,
Yan Xu,
Yu Li,
Yuanding Zhao
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0208996
Subject(s) - voxel , point cloud , computer science , artificial intelligence , lidar , segmentation , computer vision , grayscale , pattern recognition (psychology) , remote sensing , algorithm , geology , pixel
Among traditional Light Detection And Ranging (LIDAR) data representations such as raster grid, triangulated irregular network, point clouds and octree, the explicit 3D nature of voxel-based representation makes it a promising alternative. Despite the benefit of voxel-based representation, voxel-based algorithms have rarely been used for building detection. In this paper, a voxel segmentation-based 3D building detection algorithm is developed for separating building and nonbuilding voxels. The proposed algorithm first voxelizes the LIDAR point cloud into a grayscale voxel structure in which the grayscale of the voxel corresponds to the quantized mean intensity of the LIDAR points within the voxel. The voxelized dataset is segmented into multiple 3D-connected regions depending on the connectivity and grayscale similarity among voxels. The 3D-connected regions corresponding to the building roof and facade are detected sequentially according to characteristics such as their area, density, elevation difference and location. The obtained results for the detected buildings are evaluated by the LIDAR data provided by working group III/4 of ISPRS, which demonstrate a high rate of success. Average completeness, correctness, quality, and kappa coefficient indexes values of 90.0%, 96.0%, 88.1% and 88.7%, respectively, are obtained for buildings.