z-logo
open-access-imgOpen Access
Quantifying skeletal muscle volume and shape in humans using MRI: A systematic review of validity and reliability
Author(s) -
Christelle Pons,
Bhushan Borotikar,
Marc Garétier,
Valérie Burdin,
Douraı̈ed Ben Salem,
Mathieu Lempereur,
Sylvain Brochard
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0207847
Subject(s) - segmentation , computer science , gold standard (test) , reliability (semiconductor) , artificial intelligence , medicine , radiology , power (physics) , physics , quantum mechanics
Aims The aim of this study was to report the metrological qualities of techniques currently used to quantify skeletal muscle volume and 3D shape in healthy and pathological muscles. Methods A systematic review was conducted (Prospero CRD42018082708). PubMed, Web of Science, Cochrane and Scopus databases were searched using relevant keywords and inclusion/exclusion criteria. The quality of the articles was evaluated using a customized scale. Results Thirty articles were included, 6 of which included pathological muscles. Most evaluated lower limb muscles. Partially or completely automatic and manual techniques were assessed in 10 and 24 articles, respectively. Manual slice-by-slice segmentation reliability was good-to-excellent (n = 8 articles) and validity against dissection was moderate to good(n = 1). Manual slice-by-slice segmentation was used as a gold-standard method in the other articles. Reduction of the number of manually segmented slices (n = 6) provided good to excellent validity if a sufficient number of appropriate slices was chosen. Segmentation on one slice (n = 11) increased volume errors. The Deformation of a Parametric Specific Object (DPSO) method (n = 5) decreased the number of manually-segmented slices required for any chosen level of error. Other automatic techniques combined with different statistical shape or atlas/images-based methods (n = 4) had good validity. Some particularities were highlighted for specific muscles. Except for manual slice by slice segmentation, reliability has rarely been reported. Conclusions The results of this systematic review help the choice of appropriate segmentation techniques, according to the purpose of the measurement. In healthy populations, techniques that greatly simplified the process of manual segmentation yielded greater errors in volume and shape estimations. Reduction of the number of manually segmented slices was possible with appropriately chosen segmented slices or with DPSO. Other automatic techniques showed promise, but data were insufficient for their validation. More data on the metrological quality of techniques used in the cases of muscle pathology are required.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here