z-logo
open-access-imgOpen Access
Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks
Author(s) -
Matthew A. Schiefer,
Emily L. Graczyk,
S. M. Sidik,
Daniel Tan,
Dustin J. Tyler
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0207659
Subject(s) - proprioception , somatosensory system , sensory system , kinesthetic learning , object (grammar) , haptic technology , sensation , psychology , physical medicine and rehabilitation , sensory threshold , computer science , artificial intelligence , computer vision , cognitive psychology , medicine , neuroscience , developmental psychology
Somatosensory feedback of the hand is essential for object identification. Without somatosensory feedback, individuals cannot reliably determine the size or compliance of an object. Electrical nerve stimulation can restore localized tactile and proprioceptive feedback with intensity discrimination capability similar to natural sensation. We hypothesized that adding artificial somatosensation improves object recognition accuracy when using a prosthesis. To test this hypothesis, we provided different forms of sensory feedback–tactile, proprioceptive, or both–to two subjects with upper limb loss. The subjects were asked to identify the size or mechanical compliance of different foam blocks placed in the prosthetic hand while visually and audibly blinded. During trials, we did not inform the subjects of their performance, but did ask them about their confidence in correctly identifying objects. Finally, we recorded applied pressures during object interaction. Subjects were free to use any strategy they chose to examine the objects. Object identification was most accurate with both tactile and proprioceptive feedback. The relative importance of each type of feedback, however, depended on object characteristics and task. Sensory feedback increased subject confidence and was directly correlated with accuracy. Subjects applied less pressure to the objects when they had tactile pressure feedback. Artificial somatosensory feedback improves object recognition and the relative importance of tactile versus proprioceptive feedback depends on the test set. We believe this test battery provides an effective means to assess the impact of sensory restoration and the relative contribution of different forms of feedback (tactile vs. kinesthetic) within the neurorehabilitation field.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here