z-logo
open-access-imgOpen Access
Detection of size of manufactured sand particles based on digital image processing
Author(s) -
Jianhong Yang,
Wen Yu,
Huaiying Fang,
Xiaoyu Huang,
Sijia Chen
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0206135
Subject(s) - image processing , digital image analysis , digital image processing , digital imaging , digital image , computer science , computer vision , image (mathematics)
The size distribution of manufactured sand particles has a significant influence on the quality of concrete. To overcome the shortcomings of the traditional vibration-sieving method, a manufactured sand casting/dispersing system was developed, based on the characteristics of the sand particle contours (as determined by backlit image acquisition) and an extraction mechanism. Algorithms for eliminating particles from the image that had be repeatedly captured, as well as for identifying incomplete particles at the boundaries of the image, granular contour segmentation, and the determination of an equivalent particle size, are studied. The hardware and software for the image-based detection device were developed. A particle size repeatability experiment was carried out on the single-grade sands, grading the size fractions of the manufactured sand over a range of 0.6–4.75 mm. A method of particle-size correction is proposed to compensate for the difference in the results obtained by the image-based method and those obtained by the sieving method. The experimental results show that the maximum repeatability error of single-grade fractions is 3.46% and the grading size fraction is 0.51%. After the correction of the image method, the error between the grading size fractions obtained by the two methods was reduced from 7.22%, 6.10% and 5% to 1.47%, 1.65%, and 3.23%, respectively. The accuracy of the particle-size detection can thus satisfy real-world measuring requirements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here