z-logo
open-access-imgOpen Access
Obstacle detection for lake-deployed autonomous surface vehicles using RGB imagery
Author(s) -
Philippe Paccaud,
David Andrew Barry
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0205319
Subject(s) - obstacle , computer science , artificial intelligence , rgb color model , computer vision , pixel , feature (linguistics) , remote sensing , false positive paradox , image processing , image (mathematics) , geology , geography , linguistics , philosophy , archaeology
We describe and test an obstacle-detection system for small, lake-deployed autonomous surface vehicles (ASVs) that relies on a low-cost, consumer-grade camera and runs on a single-board computer. A key feature of lakes that must be accounted for is the frequent presence of the shoreline in images as well as the land-sky boundary. These particularities, along with variable weather conditions, result in a wide range of scene variations, including the possible presence of glint. The implemented algorithm is based on two main steps. First, possible obstacles are detected using an innovative gradient-based image processing algorithm developed especially for a camera with a low viewing angle to the water (i.e., the situation for a small ASV). Then, true and false positives are differentiated using correlation-based multi-frame analysis. The algorithm was tested extensively on a small ASV deployed in Lake Geneva. Under operational conditions, the algorithm processed 640×480-pixel images from a Raspberry Pi Camera at about 3—4 Hz on a Raspberry Pi 3 Model B computer. The present algorithm demonstrates that single-board computers can be used for effective and low-cost obstacle detection systems for ASVs operating in variable lake conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here