
Ups and downs in catch-up saccades following single-pulse TMS-methodological considerations
Author(s) -
James Mathew,
Frédéric Danion
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0205208
Subject(s) - transcranial magnetic stimulation , saccade , saccadic masking , smooth pursuit , neuroscience , latency (audio) , context (archaeology) , eye movement , psychology , computer science , neural activity , stimulation , cognitive psychology , physical medicine and rehabilitation , medicine , biology , telecommunications , paleontology
Transcranial magnetic stimulation (TMS) can interfere with smooth pursuit or with saccades initiated from a fixed position toward a fixed target, but little is known about the effect of TMS on catch-up saccade made to assist smooth pursuit. Here we explored the effect of TMS on catch-up saccades by means of a situation in which the moving target was driven by an external agent, or moved by the participants’ hand, a condition known to decrease the occurrence of catch-up saccade. Two sites of stimulation were tested, the vertex and M1 hand area. Compared to conditions with no TMS, we found a consistent modulation of saccadic activity after TMS such that it decreased at 40-100ms, strongly resumed at 100-160ms, and then decreased at 200-300ms. Despite this modulatory effect, the accuracy of catch-up saccade was maintained, and the mean saccadic activity over the 0-300ms period remained unchanged. Those findings are discussed in the context of studies showing that single-pulse TMS can induce widespread effects on neural oscillations as well as perturbations in the latency of saccades during reaction time protocols. At a more general level, despite challenges and interpretational limitations making uncertain the origin of this modulatory effect, our study provides direct evidence that TMS over presumably non-oculomotor regions interferes with the initiation of catch-up saccades, and thus offers methodological considerations for future studies that wish to investigate the underlying neural circuitry of catch-up saccades using TMS.