z-logo
open-access-imgOpen Access
Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts
Author(s) -
Michael Porter,
Pooya Niksiar
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0204309
Subject(s) - radar , computer science , biological system , radar chart , plot (graphics) , visualization , artificial intelligence , mathematics , biology , statistics , telecommunications
Comparing the functional performance of biological systems often requires comparing multiple mechanical properties. Such analyses, however, are commonly presented using orthogonal plots that compare N ≤ 3 properties. Here, we develop a multidimensional visualization strategy using permutated radar charts (radial, multi-axis plots) to compare the relative performance distributions of mechanical systems on a single graphic across N ≥ 3 properties. Leveraging the fact that radar charts plot data in the form of closed polygonal profiles, we use shape descriptors for quantitative comparisons. We identify mechanical property-function correlations distinctive to rigid, flexible, and damage-tolerant biological materials in the form of structural ties, beams, shells, and foams. We also show that the microstructures of dentin, bone, tendon, skin, and cartilage dictate their tensile performance, exhibiting a trade-off between stiffness and extensibility. Lastly, we compare the feeding versus singing performance of Darwin’s finches to demonstrate the potential of radar charts for multidimensional comparisons beyond mechanics of materials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here