z-logo
open-access-imgOpen Access
An Enhanced Region Proposal Network for object detection using deep learning method
Author(s) -
Yu Peng Chen,
Ying Li,
Gang Wang
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0203897
Subject(s) - computer science , object detection , pascal (unit) , artificial intelligence , support vector machine , pattern recognition (psychology) , convolutional neural network , particle swarm optimization , pyramid (geometry) , data set , set (abstract data type) , object (grammar) , viola–jones object detection framework , machine learning , mathematics , face detection , geometry , programming language , facial recognition system
Faster Region-based Convolutional Network (Faster R-CNN) is a state-of-the-art object detection method. However, the object detection effect of Faster R-CNN is not good based on the Region Proposal Network (RPN). Inspired by RPN of Faster R-CNN, we propose a novel proposal generation method called Enhanced Region Proposal Network (ERPN). Four improvements are presented in ERPN. Firstly, our proposed deconvolutional feature pyramid network (DFPN) is introduced to improve the quality of region proposals. Secondly, novel anchor boxes are designed with interspersed scales and adaptive aspect ratios. Thereafter, the capability of object localization is increased. Thirdly, a particle swarm optimization (PSO) based support vector machine (SVM), termed PSO-SVM, is developed to distinguish the positive and negative anchor boxes. Fourthly, the classification part of multi-task loss function in RPN is improved. Consequently, the effect of classification loss is strengthened. In this study, our proposed ERPN is compared with five object detection methods on both PASCAL VOC and COCO data sets. For the VGG-16 model, our ERPN obtains 78.6% mAP on VOC 2007 data set, 74.4% mAP on VOC 2012 data set and 31.7% on COCO data set. The performance of ERPN is the best among the comparison object detection methods. Furthermore, the detection speed of ERPN is 5.8 fps. Additionally, ERPN obtains good effect on small object detection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here