Open Access
Joint approach of diffusion- and perfusion-weighted MRI in intra-axial mass like lesions in clinical practice simulation
Author(s) -
Ra Gyoung Yoon,
Ho Sung Kim,
Gil-Sun Hong,
Ji Eun Park,
Sung Eun Jung,
Sang Joon Kim
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0202891
Subject(s) - diffusion mri , perfusion , diffusion , joint (building) , medicine , clinical practice , computer science , magnetic resonance imaging , medical physics , nuclear medicine , radiology , nuclear magnetic resonance , physics , physical therapy , engineering , architectural engineering , thermodynamics
Although advanced magnetic resonance imaging (MRI) techniques provide useful information for the differential diagnosis of intra-axial mass-like lesions, the specific diagnostic role of multimodal MRI over conventional magnetic resonance imaging (CMRI) alone in the differential diagnosis of mass-like lesions from a large heterogeneous cohort has not been studied. In this study, we aimed to determine the added value of a joint approach of diffusion-weighted imaging (DWI) and dynamic-susceptibility-contrast perfusion imaging (DSC-PWI) for diagnosis of intra-axial mass-like lesions, comparing them with CMRI alone. Furthermore, we performed these evaluations in a manner simulating clinical practice. Our institutional review board approved this retrospective study and waived the requirement for informed consent. A total of 1038 patients with intra-axial mass-like lesions were retrospectively recruited according to their histological and clinico-radiological diagnoses made between January 2005 and December 2014. All patients underwent CMRI, DWI and DSC-PWI. The diagnostic accuracy and confidence in diagnosing each type of intra-axial mass-like lesions, and for differentiating the intra-axial brain tumors from non-neoplastic lesions, were compared according to the MRI protocols. The disease-specific sensitivity of joint approach differed according to specific disease entities in diagnosing each disease category. Joint approach provided the best diagnostic accuracy for discriminating intra-axial brain tumors from non-neoplastic lesions, with high diagnostic accuracy (95.3–96.7%), specificity (82–84.0%), positive-predictive-value (97.0–97.3%), and negative-predictive-value (84.8–92.7%), with the reader’s confidence values being significantly improved over those on CMRI alone (all p -values < 0.001). In conclusion, joint approach of DWI, DSC-PWI to CMRI helps to differentiate non-neoplastic lesions from intra-axial brain tumors, and improves diagnostic confidence compared with CMRI alone. The benefit from the combined imaging differs for each disease category; thus joint approach needs to be customized according to clinical suspicion.