z-logo
open-access-imgOpen Access
Altered functional connectivity within the default mode network in two animal models with opposing episodic memories
Author(s) -
MuHuo Ji,
Jiangyan Xia,
Xiaohui Tang,
Jianjun Yang
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0202661
Subject(s) - retrosplenial cortex , prefrontal cortex , neuroscience , default mode network , piriform cortex , episodic memory , cortex (anatomy) , functional magnetic resonance imaging , psychology , insular cortex , infralimbic cortex , cognition , hippocampus
Memory enhancement and memory decline are two opposing cognitive performances commonly observed in clinical practice, yet the neural mechanisms underlying these two different phenomena remain poorly understood. Accumulating evidence has demonstrated that the default-mode network (DMN) is implicated in diverse cognitive, social, and affective processes. In the present study, we used the retrosplenial cortex as a seed region to study the functional connectivity within the DMN in two animal models with opposing episodic memories, of which memory enhancement was induced by footshocks to mimic posttraumatic stress disorder (PTSD) and memory decline was induced by lipopolysaccharide (LPS) challenge to mimic sepsis-associated encephalopathy (SAE). Our results showed that LPS challenge and footshocks induced opposing episodic memories. With regard to the imaging data, there were significant differences in the functional connectivity between the retrosplenial cortex and the medial prefrontal cortex (mPFC), insular lobe, left piriform cortex, left sensory cortex, and right visual cortex among the three groups. Post-hoc comparisons showed the LPS group had a significantly increased functional connectivity between the retrosplenial cortex and mPFC as compared with the control group. Compared with the LPS group, the PTSD group displayed significantly decreased functional connectivity between the retrosplenial cortex and the right visual cortex, retrosplenial cortex, insular lobe, left piriform cortex, and left sensory cortex. In summary, our study suggests that there is a significant difference in the functional connectivity within the DMN between SAE and PTSD rats.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here