
Multiscale permutation Rényi entropy and its application for EEG signals
Author(s) -
Yinghuang Yin,
Kehui Sun,
Shaobo He
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0202558
Subject(s) - electroencephalography , weighting , computer science , permutation (music) , entropy (arrow of time) , pattern recognition (psychology) , artificial intelligence , algorithm , physics , neuroscience , psychology , quantum mechanics , acoustics
There is considerable interest in analyzing the complexity of electroencephalography (EEG) signals. However, some traditional complexity measure algorithms only quantify the complexities of signals, but cannot discriminate different signals very well. To analyze the complexity of epileptic EEG signals better, a new multiscale permutation Rényi entropy (MPEr) algorithm is proposed. In this algorithm, the coarse-grained procedure is introduced by using weighting-averaging method, and the weighted factors are determined by analyzing nonlinear signals. We apply the new algorithm to analyze epileptic EEG signals. The experimental results show that MPEr algorithm has good performance for discriminating different EEG signals. Compared with permutation Rényi entropy (PEr) and multiscale permutation entropy (MPE), MPEr distinguishes different EEG signals successfully. The proposed MPEr algorithm is effective and has good applications prospects in EEG signals analysis.