Open Access
Characterization of diverse homoserine lactone synthases in Escherichia coli
Author(s) -
René Daer,
Cassandra Barrett,
Ernesto Luna Melendez,
Jiaqi Wu,
Stefan J. Tekel,
Jimmy Xu,
Brady Dennison,
Ryan Muller,
Karmella A. Haynes
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0202294
Subject(s) - quorum sensing , escherichia coli , crosstalk , biofilm , biology , homoserine , chromobacterium violaceum , swarming motility , computational biology , biochemistry , microbiology and biotechnology , bacteria , genetics , gene , physics , optics
Quorum sensing networks have been identified in over one hundred bacterial species to date. A subset of these networks regulate group behaviors, such as bioluminescence, virulence, and biofilm formation, by sending and receiving small molecules called homoserine lactones (HSLs). Bioengineers have incorporated quorum sensing pathways into genetic circuits to connect logical operations. However, the development of higher-order genetic circuitry is inhibited by crosstalk, in which one quorum sensing network responds to HSLs produced by a different network. Here, we report the construction and characterization of a library of ten synthases including some that are expected to produce HSLs that are incompatible with the Lux pathway, and therefore show no crosstalk. We demonstrated their function in a common lab chassis, Escherichia coli BL21, and in two contexts, liquid and solid agar cultures, using decoupled Sender and Receiver pathways. We observed weak or strong stimulation of a Lux receiver by longer-chain or shorter-chain HSL-generating Senders, respectively. We also considered the under-investigated risk of unintentional release of incompletely deactivated HSLs in biological waste. We found that HSL-enriched media treated with bleach were still bioactive, while autoclaving deactivates LuxR induction. This work represents the most extensive comparison of quorum signaling synthases to date and greatly expands the bacterial signaling toolkit while recommending practices for disposal based on empirical, quantitative evidence.