
Intravitreal pro-inflammatory cytokines in non-obese diabetic mice: Modelling signs of diabetic retinopathy
Author(s) -
Odunayo O. Mugisho,
Ilva D. Rupenthal,
David Squirrell,
Sarah Bould,
Helen V. DaneshMeyer,
Jie Zhang,
Colin Green,
Mónica L. Acosta
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0202156
Subject(s) - diabetic retinopathy , medicine , inflammation , astrogliosis , diabetes mellitus , retinal , proinflammatory cytokine , retinopathy , pathology , ophthalmology , endocrinology , central nervous system
Diabetic retinopathy is a vascular disease of the retina characterised by hyperglycaemic and inflammatory processes. Most animal models of diabetic retinopathy are hyperglycaemia-only models that do not account for the significant role that inflammation plays in the development of the disease. In the present study, we present data on the establishment of a new animal model of diabetic retinopathy that incorporates both hyperglycaemia and inflammation. We hypothesized that inflammation may trigger and worsen the development of diabetic retinopathy in a hyperglycaemic environment. Pro-inflammatory cytokines, IL-1β and TNF-α, were therefore injected into the vitreous of non-obese diabetic (NOD) mice. CD1 mice were used as same genetic background controls. Fundus and optical coherence tomography images were obtained before (day 0) as well as on days 2 and 7 after intravitreal cytokine injection to assess vessel dilation and beading, retinal and vitreous hyper-reflective foci and retinal thickness. Astrogliosis and microgliosis were assessed using immunohistochemistry. Results showed that intravitreal cytokines induced vessel dilation, beading, severe vitreous hyper-reflective foci, retinal oedema, increased astrogliosis and microglia upregulation in diabetic NOD mice. Intravitreal injection of inflammatory cytokines into the eyes of diabetic mice therefore appears to provide a new model of diabetic retinopathy that could be used for the study of disease progression and treatment strategies.