
Ubiquitination of alpha-synuclein filaments by Nedd4 ligases
Author(s) -
Thomas Mund,
Masami Masuda-Suzukake,
Michel Goedert
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0200763
Subject(s) - ubiquitin ligase , ubiquitin , alpha synuclein , nedd4 , ubiquitin protein ligases , microbiology and biotechnology , dna ligase , synucleinopathies , chemistry , synuclein , alpha chain , biochemistry , biology , parkinson's disease , enzyme , receptor , medicine , disease , gene , pathology
Alpha-synuclein can form beta-sheet filaments, the accumulation of which plays a key role in the development of Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy. It has previously been shown that alpha-synuclein is a substrate for the HECT domain-containing ubiquitin ligase Nedd4, and is subject to ubiquitin-mediated endosomal degradation. We show here that alpha-synuclein filaments are much better substrates for ubiquitination in vitro than monomeric alpha-synuclein, and that this increased susceptibility cannot be mimicked by the mere clustering of monomers. Recognition by Nedd4 family enzymes is not through the conventional binding of PPxY-containing sequences to WW domains of the ligase, but it also involves C2 and HECT domains. The disease-causing alpha-synuclein mutant A53T is a much less efficient substrate for Nedd4 ligases than the wild-type protein. We suggest that preferential recognition, ubiquitination and degradation of beta-sheet-containing filaments may help to limit toxicity, and that A53T alpha-synuclein may be more toxic, at least in part because it avoids this fate.