Open Access
Perspectives of human verification via binary QRS template matching of single-lead and 12-lead electrocardiogram
Author(s) -
Vessela Krasteva,
Irena Jekova,
Ramun Schmid
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0197240
Subject(s) - receiver operating characteristic , pattern recognition (psychology) , computer science , biometrics , linear discriminant analysis , artificial intelligence , qrs complex , sample size determination , population , statistics , medicine , mathematics , machine learning , environmental health
Objective This study aims to validate the 12-lead electrocardiogram (ECG) as a biometric modality based on two straightforward binary QRS template matching characteristics. Different perspectives of the human verification problem are considered, regarding the optimal lead selection and stability over sample size, gender, age, heart rate (HR). Methods A clinical 12-lead resting ECG database, including a population of 460 subjects with two-session recordings (>1 year apart) is used. Cost-effective strategies for extraction of personalized QRS patterns (100ms) and binary template matching estimate similarity in the time scale (matching time) and dissimilarity in the amplitude scale (mismatch area). The two-class person verification task, taking the decision to validate or to reject the subject identity is managed by linear discriminant analysis (LDA). Non-redundant LDA models for different lead configurations (I,II,III,aVF,aVL,aVF,V1-V6) are trained on the first half of 230 subjects by stepwise feature selection until maximization of the area under the receiver operating characteristic curve (ROC AUC). The operating point on the training ROC at equal error rate (EER) is tested on the independent dataset (second half of 230 subjects) to report unbiased validation of test-ROC AUC and true verification rate (TVR = 100-EER). The test results are further evaluated in groups by sample size, gender, age, HR. Results and discussion The optimal QRS pattern projection for single-lead ECG biometric modality is found in the frontal plane sector (60°-0°) with best (Test-AUC/TVR) for lead II (0.941/86.8%) and slight accuracy drop for -aVR (-0.017/-1.4%), I (-0.01/-1.5%). Chest ECG leads have degrading accuracy from V1 (0.885/80.6%) to V6 (0.799/71.8%). The multi-lead ECG improves verification: 6-chest (0.97/90.9%), 6-limb (0.986/94.3%), 12-leads (0.995/97.5%). The QRS pattern matching model shows stable performance for verification of 10 to 230 individuals; insignificant degradation of TVR in women by (1.2–3.6%), adults ≥70 years (3.7%), younger <40 years (1.9%), HR<60bpm (1.2%), HR>90bpm (3.9%), no degradation for HR change (0 to >20bpm).