z-logo
open-access-imgOpen Access
The immunological effect of Galectin-9/TIM-3 pathway after low dose Mifepristone treatment in mice at 14.5 day of pregnancy
Author(s) -
Adrienn Lajko,
Mátyás Meggyes,
Beáta Polgár,
László Szereday
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0194870
Subject(s) - mifepristone , decidua , abortifacient , immune system , flow cytometry , medicine , endocrinology , andrology , biology , pregnancy , immunology , placenta , fetus , genetics
The abortifacient Mifepristone (RU486) has proven to be a safe, effective, acceptable option for millions of women seeking abortion during the first and second trimester of pregnancy although its precise mechanism of action is not well understood. The main objective of this study was to investigate the impact of low dose Mifepristone administration on placental Galectin-9 (Gal-9) expression, as well as its effect on the cell surface expression of Gal-9, TIM-3 and CD107a molecules by different T and NK cell subsets. A model of Mifepristone-induced immunological changes was established in syngeneic pregnant BALB/c mice. RU486-induced alteration in placental Gal-9 expression was determined by immunohistochemistry. For immunophenotypic analysis, mid-pregnancy decidual lymphocytes and peripheral mononuclear cells were obtained from Mifepristone treated and control mice at the 14.5 day of gestation. TIM-3 and Gal-9 expression by peripheral and decidual immune cells were examined by flow cytometry. Our results revealed a dramatically decreased intracellular Gal-9 expression in the spongiotrophoblast layer of the haemochorial placenta in Mifepristone treated pregnant mice. Although low dose RU486 treatment did not cause considerable change in the phenotypic distribution of decidual and peripheral immune cells, it altered the Gal-9 and TIM-3 expression by different NK and T cell subsets. In addition, the treatment significantly decreased the CD107a expression by decidual TIM-3+ NK cells, but increased its expression by decidual NKT cell compared to the peripheral counterparts. These findings suggest that low dose Mifepristone administration might induce immune alterations in both progesterone dependent and independent way.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here