z-logo
open-access-imgOpen Access
Complex genetic interactions of novel Suppressor of Hairless alleles deficient in co-repressor binding
Author(s) -
Anette Preiss,
Anja C. Nagel,
Praxenthaler Heiko,
Dieter Maier
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0193956
Subject(s) - hairless , repressor , null allele , biology , genetics , mutant , notch signaling pathway , allele , gene , psychological repression , phenotype , microbiology and biotechnology , transcription factor , gene expression
Throughout the animal kingdom, the Notch signalling pathway allows cells to acquire diversified cell fates. Notch signals are translated into activation of Notch target genes by CSL transcription factors. In the absence of Notch signals, CSL together with co-repressors functions as a transcriptional repressor. In Drosophila , repression of Notch target genes involves the CSL homologue Suppressor of Hairless (Su(H)) and the Notch (N) antagonist Hairless (H) that together form a repressor complex. Guided by crystal structure, three mutations Su(H) LL , Su(H) LLF and Su(H) LLL were generated that specifically affect interactions with the repressor H, and were introduced into the endogenous Su(H) locus by gene engineering. In contrast to the wild type isoform, these Su(H) mutants are incapable of repressor complex formation. Accordingly, Notch signalling activity is dramatically elevated in the homozygotes, resembling complete absence of H activity. It was noted, however, that heterozygotes do not display a dominant H loss of function phenotype. In this work we addressed genetic interactions the three H-binding deficient Su(H) mutants display in combination with H and N null alleles. We included a null mutant of Delta (Dl) , encoding the ligand of the Notch receptor, as well as of Su(H) itself in our genetic analyses. H , N or Dl mutations cause dominant wing phenotypes that are sensitive to gene dose of the others. Moreover, H heterozygotes lack bristle organs and develop bristle sockets instead of shafts. The latter phenotype is suppressed by Su(H) null alleles but not by H-binding deficient Su(H) alleles which we attribute to the socket cell specific activity of Su(H). Modification of the dominant wing phenotypes of either H , N or Dl , however, suggested some lack of repressor activity in the Su(H) null allele and likewise in the H-binding deficient Su(H) alleles. Overall, Su(H) mutants are recessive perhaps reflecting self-adjusting availability of Su(H) protein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here