
RNA activating-double stranded RNA targeting flt-1 promoter inhibits endothelial cell proliferation through soluble FLT-1 upregulation
Author(s) -
Sang Ho Choi,
Hironori Uehara,
Yuanyuan Wu,
Subrata K. Das,
Xiaohui Zhang,
Bonnie Archer,
Lara Carroll,
Balamurali K. Ambati
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0193590
Subject(s) - downregulation and upregulation , rna , cell growth , microbiology and biotechnology , chemistry , biology , biochemistry , gene
Short-activating RNA (saRNA), which targets gene promoters, has been shown to increase the target gene expression. In this study, we describe the use of an saRNA (Flt a-1) to target the flt-1 promoter, leading to upregulation of the soluble isoform of Flt-1 and inhibition of angiogenesis. We demonstrate that Flt a-1 increased sFlt-1 mRNA and protein levels, while reducing VEGF expression. This was associated with suppression of human umbilical vascular endothelial cell (HUVEC) proliferation and cell cycle arrest at the G 0 /G 1 phase. HUVEC migration and tube formation were also suppressed by Flt a-1. An siRNA targeting Flt-1 blocked the effects of Flt a-1. Flt a-1 effects were not mediated via argonaute proteins. However, trichostatin A and 5’-deoxy-5’-(methylthio) adenosine inhibited Flt a-1 effects, indicating that histone acetylation and methylation are mechanistically involved in RNA activation of Flt-1. In conclusion, RNA activation of sFlt-1 can be used to inhibit angiogenesis.