z-logo
open-access-imgOpen Access
AHR2 required for normal behavioral responses and proper development of the skeletal and reproductive systems in zebrafish
Author(s) -
Gloria R. Garcia,
Sean M. Bugel,
Lisa Truong,
Sean Spagnoli,
Robert L. Tanguay
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0193484
Subject(s) - zebrafish , biology , aryl hydrocarbon receptor , microbiology and biotechnology , vertebrate , morphogenesis , anatomy , transcription factor , genetics , gene
The aryl hydrocarbon receptor (AHR) is a conserved ligand-activated transcription factor required for proper vertebrate development and homeostasis. The inappropriate activation of AHR by ubiquitous pollutants can lead to adverse effects on wildlife and human health. The zebrafish is a powerful model system that provides a vertebrate data stream that anchors hypothesis at the genetic and cellular levels to observations at the morphological and behavioral level, in a high-throughput format. In order to investigate the endogenous functions of AHR, we generated an AHR2 (homolog of human AHR)-null zebrafish line ( ahr2 osu1 ) using the clustered, regulatory interspaced, short palindromic repeats (CRISPR)-Cas9 precision genome editing method. In zebrafish, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) mediated toxicity requires AHR2. The AHR2-null line was resistant to TCDD-induced toxicity, indicating the line can be used to investigate the biological and toxicological functions of AHR2. The AHR2-null zebrafish exhibited decreased survival and fecundity compared to the wild type line. At 36 weeks, histological evaluations of the AHR2-null ovaries revealed a reduction of mature follicles when compared to wild type ovaries, suggesting AHR2 regulates follicle growth in zebrafish. AHR2-null adults had malformed cranial skeletal bones and severely damaged fins. Our data suggests AHR2 regulates some aspect(s) of neuromuscular and/or sensory system development, with impaired behavioral responses observed in larval and adult AHR2-null zebrafish. This study increases our understanding of the endogenous functions of AHR, which may help foster a better understanding of the target organs and molecular mechanisms involved in AHR-mediated toxicities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here