z-logo
open-access-imgOpen Access
Time course of blast-induced injury in the rat auditory cortex
Author(s) -
Srinivasu Kallakuri,
Edward Pace,
Huichao Lu,
Hao Luo,
John M. Cavanaugh,
Jinsheng Zhang
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0193389
Subject(s) - brainstem , astrocytosis , astrocyte , glial fibrillary acidic protein , medicine , traumatic brain injury , blast injury , audiology , neuroscience , central nervous system , auditory cortex , psychology , pathology , poison control , immunohistochemistry , environmental health , psychiatry
Blast exposure is an increasingly significant health hazard and can have a range of debilitating effects, including auditory dysfunction and traumatic brain injury. To assist in the development of effective treatments, a greater understanding of the mechanisms of blast-induced auditory damage and dysfunction, especially in the central nervous system, is critical. To elucidate this area, we subjected rats to a unilateral blast exposure at 22 psi, measured their auditory brainstem responses (ABRs), and histologically processed their brains at 1 day, 1 month, and 3-month survival time points. The left and right auditory cortices was assessed for astrocytic reactivity and axonal degenerative changes using glial fibrillary acidic protein immunoreactivity and a silver impregnation technique, respectively. Although only unilateral hearing loss was induced, astrocytosis was bilaterally elevated at 1 month post-blast exposure compared to shams, and showed a positive trend of elevation at 3 months post-blast. Axonal degeneration, on the other hand, appeared to be more robust at 1 day and 3 months post-blast. Interestingly, while ABR threshold shifts recovered by the 1 and 3-month time-points, a positive correlation was observed between rats’ astrocyte counts at 1 month post-blast and their threshold shifts at 1 day post-blast. Taken together, our findings suggest that central auditory damage may have occurred due to biomechanical forces from the blast shockwave, and that different indicators/types of damage may manifest over different timelines.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here