Open Access
Asymmetric cellular responses in primary human myoblasts using sera of different origin and specification
Author(s) -
Amarjit Saini,
Eric Rullman,
Mats Lilja,
Mirko Mandić,
Michael Melin,
Karin Olsson,
Thomas Gustafsson
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0192384
Subject(s) - myogenesis , myocyte , myogenin , biology , microbiology and biotechnology , in vitro , medicine , endocrinology , insulin , chemically defined medium , biochemistry
For successful growth and maintenance of primary myogenic cells in vitro , culture medium and addition of sera are the most important factors. At present it is not established as to what extent sera of different origin and composition, supplemented in media or serum-free media conditions influence myoblast function and responses to different stimuli. By assessing markers of proliferation, differentiation/fusion, quiescence, apoptosis and protein synthesis the aim of the current study was to elucidate how primary human myoblasts and myotubes are modulated by different commonly used serum using FCS (foetal calf serum), (CS-FCS charcoal-stripped FCS, a manufacturing process to remove hormones and growth factors from sera), HS (horse serum) as well as in serum free conditions (DMEM). To characterise the biological impact of the different serum, myoblasts were stimulated with Insulin (100 nM) and Vitamin D (100 nM; 1α,25(OH) 2 D 3 , 1α,25-Dihydroxycholecalciferol, Calcitriol), two factors with characterised effects on promoting fusion and protein synthesis or quiescence, respectively in human myoblasts/myotubes. We demonstrate that sera of different origin/formulation differentially affect myoblast proliferation and myotube protein synthesis. Importantly, we showed that quantifying the extent to which Insulin effects myoblasts in vitro is highly dependent upon serum addition and which type is present in the media. Upregulation of mRNA markers for myogenic fusion, Myogenin, with Insulin stimulation, relative to DMEM, appeared dampened at varying degrees with serum addition and effects on p70S6K phosphorylation as a marker of protein synthesis could not be identified unless serum was removed from media. We propose that these asymmetric molecular and biochemical responses in human myoblasts reflect the variable composition of mitogenic and anabolic factors in each of the sera. The results have implications for both the reproducibility and interpretation of results from experimental models in myoblast cells/myotubes.