
Draft genome sequence of the New Jersey aster yellows strain of ‘Candidatus Phytoplasma asteris’
Author(s) -
Michael E. Sparks,
Kristi D. Bottner-Parker,
Dawn E. GundersenRindal,
IngMing Lee
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0192379
Subject(s) - biology , genome , genetics , genbank , phytoplasma , aster yellows , whole genome sequencing , gene , polymerase chain reaction , restriction fragment length polymorphism
The NJAY (New Jersey aster yellows) strain of ‘ Candidatus Phytoplasma asteris’ is a significant plant pathogen responsible for causing severe lettuce yellows in the U.S. state of New Jersey. A draft genome sequence was prepared for this organism. A total of 177,847 reads were assembled into 75 contigs > 518 bp with a total base value of 652,092 and an overall [G+C] content of 27.1%. A total of 733 protein coding genes were identified. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession MAPF. This draft genome was used for genome- and gene-based comparative phylogenetic analyses with other phytoplasmas, including the closely related ‘ Ca . Phytoplasma asteris’ strain, aster yellows witches’- broom (AY-WB). NJAY and AY-WB exhibit approximately 0.5% dissimilarity at the nucleotide level among their shared genomic segments. Evidence indicated that NJAY harbors four plasmids homologous to those known to encode pathogenicity determinants in AY-WB, as well as a chromosome-encoded mobile unit. Apparent NJAY orthologs to the important AY-WB virulence factors, SAP11 and SAP54, were identified. A number of secreted proteins, both membrane-bound and soluble, were encoded, with many bearing similarity to known AY-WB effector molecules and others representing possible secreted proteins that may be novel to the NJAY lineage.