z-logo
open-access-imgOpen Access
Induction of high tolerance to artemisinin by sub-lethal administration: A new in vitro model of P. falciparum
Author(s) -
Serena De Lucia,
Ioannis Tsamesidis,
Maria Carmina Pau,
Kristina R. Kesely,
Antonella Pantaleo,
Francesco Michelangelo Turrini
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0191084
Subject(s) - artemisinin , in vitro , plasmodium falciparum , biology , pharmacology , malaria , genetics , immunology
Artemisinin resistance is a major threat to malaria control efforts. Resistance is characterized by an increase in the Plasmodium falciparum parasite clearance half-life following treatment with artemisinin-based combination therapies (ACTs) and an increase in the percentage of surviving parasites. The remarkably short blood half-life of artemisinin derivatives may contribute to drug-resistance, possibly through factors including sub-lethal plasma concentrations and inadequate exposure. Here we selected for a new strain of artemisinin resistant parasites, termed the artemisinin resistant strain 1 (ARS1), by treating P. falciparum Palo Alto (PA) cultures with sub-lethal concentrations of dihydroartemisinin (DHA). The resistance phenotype was maintained for over 1 year through monthly maintenance treatments with low doses of 2.5 nM DHA. There was a moderate increase in the DHA IC 50 in ARS1 when compared with parental strain PA after 72 h of drug exposure (from 0.68 nM to 2 nM DHA). In addition, ARS1 survived treatment physiologically relevant DHA concentrations (700 nM) observed in patients. Furthermore, we confirmed a lack of cross-resistance against a panel of antimalarials commonly used as partner drugs in ACTs. Finally, ARS1 did not contain P fk13 propeller domain mutations associated with ART resistance in the Greater Mekong Region. With a stable growth rate, ARS1 represents a valuable tool for the development of new antimalarial compounds and studies to further elucidate the mechanisms of ART resistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here