z-logo
open-access-imgOpen Access
Loss of TLR4 in mouse Müller cells inhibits both MyD88-dependent and –independent signaling
Author(s) -
Li Liu,
Jena J. Steinle
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0190253
Subject(s) - microbiology and biotechnology , signal transduction , tlr4 , chemistry , biology
Müller cells are key to metabolic and ionic regulation in the retina. They also produce a number of inflammatory mediators and are significantly affected in diabetic retinopathy. To investigate the role of toll-like receptor 4 (TLR4) in retinal Müller cells, we crossed TLR4 floxed with PDGFRα-Cre mice to eliminate TLR4 in retinal Müller cells. We performed Western blotting and ELISA analyses to determine whether loss of TLR4 affected myeloid differentiation primary response protein (MyD88)-dependent or –independent signaling, leading to reduced levels of tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL1β) in whole retinal lysates from the TLR4 floxed and TLR4-PDGFRα-Cre mice. Data show that TLR4-PDGFRα-Cre mice have reduced levels of both the MyD88-dependent and -independent signaling pathways. These studies confirm successful development of a Müller cell-specific TLR4 knockout mouse colony. These mice have reduced MyD88-dependent and –independent signaling pathway proteins, as well as reduced TNFα and IL1β levels. These mice can be used to dissect TLR4 signaling in disorders affecting retinal Müller cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here