z-logo
open-access-imgOpen Access
Efficacy of lateral- versus medial-approach hip joint capsule denervation as surgical treatments of the hip joint pain; a neuronal tract tracing study in the sheep
Author(s) -
Waldemar Sienkiewicz,
A. Dudek,
Krzysztof Czaja,
Maciej Janeczek,
Aleksander Chrószcz,
Jerzy Kaleczyc
Publication year - 2018
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0190052
Subject(s) - denervation , anatomy , sensory system , capsule , medicine , joint capsule , surgery , biology , neuroscience , botany
Objective To evaluate efficacy of denervation of the of the hip joint capsule (HJC), as a treatment of hip joint pain. Specifically, we tested the hypothesis that HJC denervation will significantly reduce the number of sensory neurons innervating the capsule. Study design Denervation of the HJC from a medial or lateral approach was followed by retrograde tracing of sensory neurons innervating the capsule. Animals Twenty adult male sheep (30–40 kg of body weight; Polish merino breed) were used in the study. Methods The hip joint was denervated from medial (n = 5) or lateral (n = 5) surgical approaches. Immediately after denervation, the retrograde neural tract tracer Fast Blue (FB) was injected into the HJC. An additional ten animals (n = 5 for medial and n = 5 for lateral approach) received the same treatment without HJC denervation to provide the appropriate controls. Results Results of the study revealed that the vast majority of retrogradely labelled sensory neurons innervating the HJC originate from fifth lumbar to second sacral dorsal root ganglia. Both the medial and the lateral denervations significantly reduced the number of sensory neurons innervating the HJC (39.2% and 69.0% reduction respectively). Conclusions These results show that denervation of the HJC is an effective surgical procedure for reduction of the sensory neuronal input to the HJC. Moreover, the lateral approach was found to be significantly more effective for reducing sensory innervation as compared to the medial one.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here