z-logo
open-access-imgOpen Access
Roles of claudin-2, ZO-1 and occludin in leaky HK-2 cells
Author(s) -
Sua Kim,
Gheun-Ho Kim
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0189221
Subject(s) - occludin , paracellular transport , claudin , tight junction , transfection , microbiology and biotechnology , small interfering rna , chemistry , biology , permeability (electromagnetism) , biochemistry , membrane , gene
Background Claudin-2, ZO-1, and occludin are major components of tight junctions (TJs) in the proximal tubule. However, their roles in maintaining paracellular permeability as leaky epithelia have yet to be defined. Methods To investigate the contributory role of TJ proteins in the leaky proximal tubule, we xamined the effect of inhibiting claudin-2, occludin, and ZO-1 expression on transepithelial electrical resistance (TER) and paracellular permeability using the immortalized human proximal tubule epithelial cell line HK-2. For this, small-interfering RNAs (siRNAs) against claudin-2, occludin and ZO-1 were transfected into HK-2 cells. TER and transepithelial flux rates of dextrans (4 and 70 kDa) were determined after 24 h. Results Transfection of siRNAs (25 nM) knocked down TJ protein expression. Control HK-2 monolayers achieved a steady-state TER of 6–8 Ω·cm 2 when grown in 12-well Transwell filters, which are compatible with leaky epithelia. Knockdown of claudin-2 decreased in TER and increased occludin expression. Transfection with siRNA against either occludin or ZO-1 increased TER and decreased claudin-2 expression. TER was decreased by co-inhibition of claudin-2 and ZO-1 but increased by co-inhibition of claudin-2 and occludin. TER was suppressed when claudin-2, occludin, and ZO-1 were all inhibited. Dextran flux rate was increased by claudin-2, occludin, or ZO-1 siRNA transfection. Increased dextran flux was enhanced by co-transfection of claudin-2, ZO-1, and occludin siRNA. Conclusions The depletion of claudin-2, occludin and ZO-1 in HK-2 cells had differential effects on TER and macromolecule flux. We demonstrated that integration of claudin-2, occludin and ZO-1 is necessary for maintaining the function of the proximal tubular epithelium.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here