z-logo
open-access-imgOpen Access
Establishment of an indirect ELISA for detection of the novel antifibrotic peptide M10
Author(s) -
Tanjina Akter,
Ilia Atanelishvili,
Atsushi Noguchi,
Richard M. Silver,
Galina S. Bogatkevich
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0188588
Subject(s) - peptide , detection limit , immunoassay , coefficient of variation , chemistry , in vivo , microbiology and biotechnology , chromatography , antibody , biochemistry , medicine , biology , immunology
Objective M10 is a ten amino acid peptide generated from the intracellular cytoplasmic tail of the hepatocyte growth factor (HGF) receptor c-Met following cleavage by caspase-3. Recently we reported that M10 interacts with Smad2 and demonstrates antifibrotic properties in vitro and in vivo and can be advanced into a novel antifibrotic remedy. The current study was undertaken to develop an immunoassay to measure M10 concentration in biological specimens. Experimental design An Indirect Enzyme-Linked Immunosorbent Assay (ELISA) for detection of M10 in biological fluids was developed using pharmaceutical grade synthetic M10 as a calibrator and commercially available anti-c-Met C12 antibody. Results M10 ELISA specifically detected in plasma M10, but not a scrambled peptide, following a single intraperitoneal administration of M10 (1mg/kg) to mice. The detection limit was 9.6 ng/ml, and the measuring limit was between 15 ng/ml and 200 ng/ml. The recovery limits of M10 were between 80% and 120%; intra-assay coefficient of variation was between 5.3% and 6.3%; inter-assay coefficient of variation was between 5.0% and 8.0% over the buffer concentration tested in the range from 15 ng /ml to 250 ng /ml. The peak of M10 concentration following a single intraperitoneal injection (1mg/kg) was achieved within 6 hours and declined to minimal levels by 48 hours. The experimentally obtained half-life for M10 was comparable to the theoretically predicted half-life for M10. Conclusions We have established a highly sensitive ELISA to detect the antifibrotic peptide M10 in plasma samples, which should prove to be a novel tool to study the pharmacokinetics and efficacy of M10 in the treatment of fibroproliferative disorders.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here