z-logo
open-access-imgOpen Access
A general model for predicting the binding affinity of reversibly and irreversibly dimerized ligands
Author(s) -
Kenneth W. Foreman
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0188134
Subject(s) - monomer , chemistry , bivalent (engine) , scaling , combinatorial chemistry , stereochemistry , biophysics , polymer , biology , metal , mathematics , organic chemistry , geometry
Empirical data has shown that bivalent inhibitors can bind a given target protein significantly better than their monomeric counterparts. However, predicting the corresponding theoretical fold improvements has been challenging. The current work builds off the reacted-site probability approach to provide a straightforward baseline reference model for predicting fold-improvements in effective affinity of dimerized ligands over their monomeric counterparts. For the more familiar irreversibly linked bivalents, the model predicts a weak dependence on tether length and a scaling of the effective affinity with the 3/2 power of the monomer’s affinity. For the previously untreated case of the emerging technology of reversibly linking dimers, the effective affinity is also significantly improved over the affinity of the non-dimerizing monomers. The model is related back to experimental quantities, such as EC 50 s, and the approaches to fully characterize the system given the assumptions of the model. Because of the predicted significant potency gains, both irreversibly and reversibly linked bivalent ligands offer the potential to be a disruptive technology in pharmaceutical research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here