
Immunohistochemical analysis of PDK1, PHD3 and HIF-1α expression defines the hypoxic status of neuroblastoma tumors
Author(s) -
Marzia Ognibene,
Davide Cangelosi,
Martina Morini,
Daniela Segalerba,
Maria Carla Bosco,
Angela Rita Sementa,
Alessandra Eva,
Luigi Varesio
Publication year - 2017
Publication title -
plos one
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 332
ISSN - 1932-6203
DOI - 10.1371/journal.pone.0187206
Subject(s) - immunohistochemistry , hypoxia (environmental) , biology , neuroblastoma , immunocytochemistry , western blot , cancer research , pathology , cell culture , medicine , gene , endocrinology , immunology , genetics , chemistry , organic chemistry , oxygen
Neuroblastoma (NB) is the most common solid tumor during infancy and the first cause of death among the preschool age diseases. The availability of several NB genomic profiles improves the prognostic ability, but the outcome prediction for this pathology remains imperfect. We previously produced a novel prognostic gene signature based on the response of NB cells to hypoxia, a condition of tumor microenvironment strictly connected with cancer aggressiveness. Here we attempted to further define the expression of hypoxia-modulated specific genes, looking at their protein level in NB specimens, considering in particular the hypoxia inducible factor-1α (HIF-1α), the mitochondrial pyruvate dehydrogenase kinase 1 (PDK1), and the HIF-prolyl hydroxylase domain 3 (PHD3). The evaluation of expression was performed by Western blot and immunocytochemistry on NB cell lines and by immunohistochemistry on tumor specimens. Stimulation of both HIF-1α and PDK1 and inhibition of PHD3 expression were observed in NB cell lines cultured under prolonged hypoxic conditions as well as in most of the tumors with poor outcome. Our results indicate that the immunohistochemistry analysis of the protein expression of PDK1, PHD3, and HIF-1α defines the hypoxic status of NB tumors and can be used as a simple and relevant tool to stratify high-risk patients.